Norms in motivic homotopy theory

نویسندگان

چکیده

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct symmetric monoidal "norm" functor $f_\otimes \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ the pointed unstable motivic homotopy category over $S$. $f$ étale, show that it stabilizes to \mathcal{S}\mathcal{H}(S') \mathcal{S}\mathcal{H}(S)$, $\mathcal{S}\mathcal{H}(S)$ $\mathbb{P}^1$-stable Using these norm functors, define notion normed spectrum, which an enhancement $E_\infty$-ring spectrum. The main content this text detailed study functors and spectra, construction examples. In particular: investigate interaction norms with Grothendieck's Galois theory, Betti realization, Voevodsky's slice filtration; prove categorify Rost's multiplicative transfers on Grothendieck-Witt rings; spectrum structures cohomology $H\mathbb{Z}$, $K$-theory $KGL$, algebraic cobordism $MGL$. structure $H\mathbb{Z}$ common refinement Fulton MacPherson's mutliplicative Chow groups power operations in cohomology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Equivariance and Stable Motivic Homotopy Theory

For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and η (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full a...

متن کامل

Motivic Homotopy Theory of Group Scheme Actions

We define an unstable equivariant motivic homotopy category for an algebraic group over a Noetherian base scheme. We show that equivariant algebraic K-theory is representable in the resulting homotopy category. Additionally, we establish homotopical purity and blow-up theorems for finite abelian groups.

متن کامل

Topology Seminar Non-nilpotent elements in motivic homotopy theory

Classically, the nilpotence theorem of Devinatz, Hopkins, and Smith tells us that non-nilpotent self maps on finite p-local spectra induce nonzero homomorphisms on BP -homology. Motivically, over C, this theorem fails to hold: we have a motivic analog of BP and whilst η : S1,1 → S0,0 induces zero on BP -homology, it is nonnilpotent. Recent work with Haynes Miller has led to a calculation of ηπ∗...

متن کامل

New families in the homotopy of the motivic sphere spectrum

In [1] Adams constructed a non-nilpotent map v 1 : Σ S/2 −→ S/2. Using iterates of this map one constructs infinite families of elements in the stable homotopy groups of spheres, the v1-periodic elements of order 2. In this paper we work motivically over C and construct a nonnilpotent self map w 1 : Σ S/η −→ S/η. We then construct some infinite families of elements in the homotopy of the motivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Astérisque

سال: 2021

ISSN: ['0303-1179', '2492-5926']

DOI: https://doi.org/10.24033/ast.1147